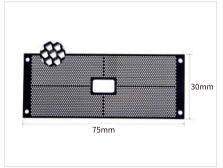


投影型マイクロ3D光造形技術 マイクロスケール 3Dプリンター

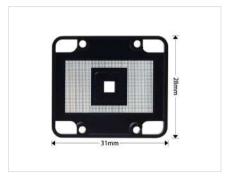
®BMF

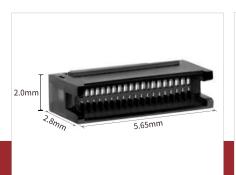
製造業の常識を打ち破る

*この写真は参考用です。

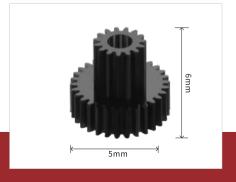

BMFについて

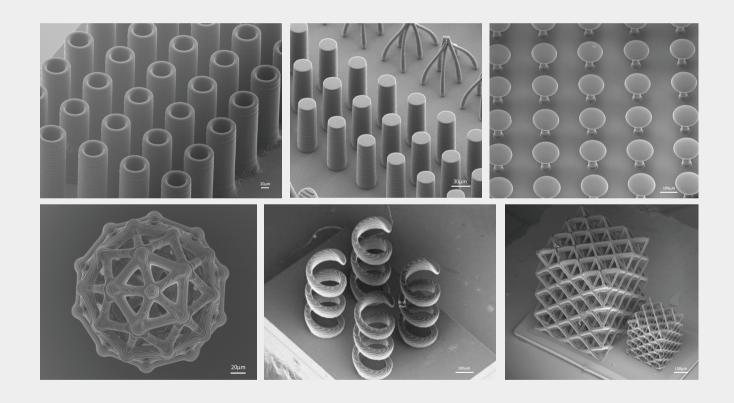
BMF社 (BMF,BostonMicroFabrication) は、世界の精密製造分野で3D造形をリードする企業で、自社開発の超高解像度マイクロスケール3D印刷技術に基づいて、世界の製造業市場に常識を打ち破る精密製造技術を提供します。BMF社の超高精度AM技術により、切削加工や金型では難しい複雑な3D微細構造を実現しています。そして、多彩な材料とプロセスを組み合わせることで、最終製品を低コストかつ高効率で生産・販売することを可能にします。


研究科学分野では、BMFが独自開発したマイクロスケール3Dプリントシステムは、アメリカのHRL、MIT、英国ノッティンガム、ドイツのドレスデン工科大学、東京大学、早稲田大学、清華大学、北京大学、アラブ首長国連邦のカリフ大学など、世界の多くの大学や研究機関で使用されています。


製造業分野では、高精度な積層造形分野のリーダーとして、BMFはGEヘルスケア、メルク、ジョンソン・エンド・ジョンソン、アンフェノール、3M、タイコ、ファーウェイなど、多くのFORTUNEGlobal500企業に最適なソリューションを提供しています。電子コネクターや内視鏡、医療機器、MEMS、通信など、様々な業界で広く使用されています。

精密部品のモデル事例




1

世界初となる 2µm の超高精度を実現する 3D プリンタシステム

グローバルで 35 カ国、1594 社以上のお客様が、 BMF のマイクロスケール 3D プリント技術を選択しています。

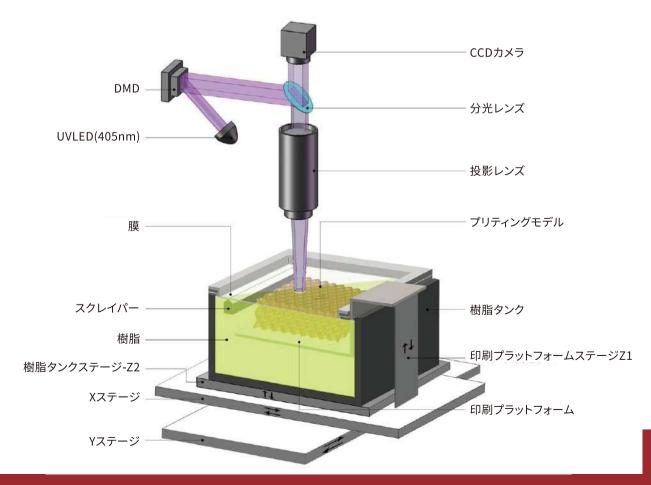
マイクロスケール 3D 造形技術 MICRO SCALE 3D PRINTING CAPABILITY

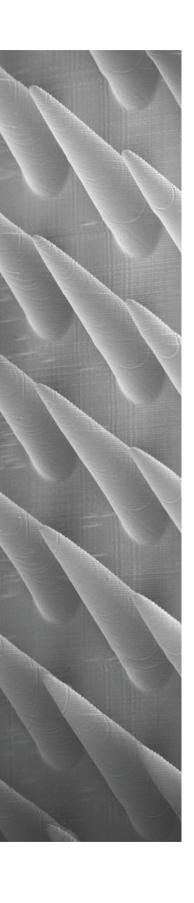
世界のマイクロスケール3Dプリント技術をリードする企業で、世界最高水準の2μmの精度を実現するPμSL技術による3Dプリンタソリューションを提供します。

BMFはPμSL技術の革新者であり、産業応用の推進者でもあります。

Technology

PµSL (ProjectionMicroStereolithography)とは、紫外線を面単位で照射することで、マイクロスケールの解像度で迅速に光重合する技術です。


このPμSL(マイクロ光硬化3Dプリント技術)技術は、緻密かつ正確な再現性の高い部品を製造することができるため、医療器具製造をはじめ、マイクロ流路、MEMS、バイオ・製薬、エレクトロニクス、教育、研究開発など、幅広い業界の部品製造に最適です。



Innovation

- 1.技術的革新: ローラー式膜システム (S240)、ステッチング技術(造形サイズの最大化)、加工公差 (± 10 um/ ± 25 um)
- 2.機械的革新;超高精細印刷(2um:130)シリーズ)、樹脂加熱システム(粘度の高い材料使用時)
- 3.材料の革新:生体適合性、耐高温性(現行114°C)、強 靭性など。

動作原理図

カタログ

マイクロスケール3Dプリンタシステム

- 2μmシリーズS230/S130
- 10μmシリーズS240/S140
- 25μmシリーズ
 P150

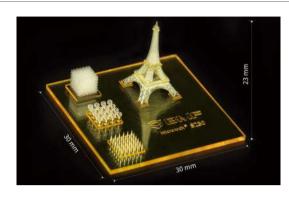
microArch®

Micro Scale **3D Printing System**

S230

システム特性

項目/製品	microArch S230製品規格		
動作原理	プロジェクション・マイクロ・ステレオリソグラフィー (PμSL)		
光源	UV LED(405nm)		
造形材料	光硬化性樹脂	光硬化性樹脂	
光学解像度	2μm	2μm	
積層厚	5~20μm		
	モード 1: 単一照射モード	3.84mm(L)×2.16mm(W)×50mm(H)	
造形サイズ	モード2:スティッチ(マルチ)照射モード	50 mm(L) \times 50 mm(W) \times 50 mm(H)	
	モード 3: 配列コピーモード	50 mm(L) \times 50 mm(W) \times 50 mm(H)	
ファイル形式	モード 3: 配列コピーモード STL ファイル	50mm(L)×50mm(W)×50mm(H)	
ファイル形式 設備外形寸法		50mm(L)×50mm(W)×50mm(H)	
	STL ファイル	50mm(L)×50mm(W)×50mm(H)	


設備の特徴と利点

- · 2µmの精密光学解像度により超微細構造を正確に造形可能;
- ・レーザー測定システムにより水平調整、焦点調整が容易に行える(S130対比);
- ・ 造形サイズの拡大、造形時間の短縮、高粘度樹脂の適用(S130対比);
- エアー フロート衝撃吸収架台によって僅かな衝撃も吸収し、造形に影響しない;
- ・ BMF社向け3Dプリンタ専用の編集ソフトウェア (MagicsとVoxeldance Additive)を標 準装備;

*この写真は参考用です。

01

典型的な造形物

応用領域:マイクロ流体

特性:

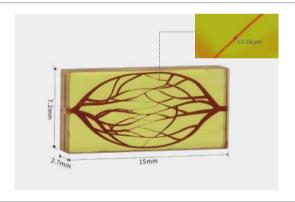
・サイズ:30×30×23 mm

·格子構造:最小ロッド径:50μm

·エッフェル塔: 最小ロッド径30µm、高さ20mm

02

バーズネスト


応用領域:マイクロ流体

特性:

・楕円形状の複雑なネットワーク構造

·積層厚:5μm; ロッド径:30-50μm

03

超微細マイクロ流路

応用領域:マイクロ流体

特性:

・サイズ:15×7.2×2.7mm

· 積層厚:10µm; 最小流路径:18um

04

側穴型マイクロニードルアレイ

応用領域:生物医学

特性:

・サイズ:10.8×10.8×14.755mm

・内部パイプと横穴が含まれて、いずれも直径0.5mm

microArch®

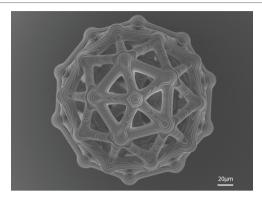
Micro Scale 3D Printing System

S130

CE

システム特性

項目/製品	microArch®S130製品規格
動作原理	プロジェクション・マイクロ・ステレオリソグラフィー (PμSL)
光源	UV LED(405nm)
造形材料	光硬化性樹脂
光学解像度	2μm
積層厚	5~20μm
造形サイズ	モード 1: 単一照射モード 3.84mm(L)×2.16mm(W)×10mm(H) モード 2: スティッチ(マルチ)照射モード 38.4mm(L)×21.6mm(W)×10mm(H) モード 3: 配列コピーモード 50mm(L)×50mm(W)×10mm(H)
ファイル形式	STL ファイル
設備外形寸法	1720 mm(L) $\times 735$ mm(W) $\times 1875$ mm(H)
設備総重量	550kg
電源	100~120V AC, 50/60Hz, 1KW

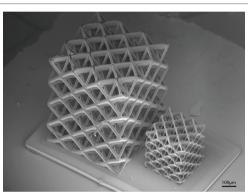

設備の特徴と利点

- ·2µmの精密光学解像度により超微細構造を正確に造形可能;
- ・積層厚は5um~20umと滑らかな仕上がり;
- ・マイクロスケール造形能力を有しながら、造形時間は実用的な範囲;
- ・エアーフロート衝撃吸収架台によって僅かな衝撃も吸収し、造形に影響しない;
- ・3D編集に特化したMagicsスライスソフトウェア が標準装備;

*この写真は参考用です。

01

バッキーボール型構造


応用領域: バイオメディカル

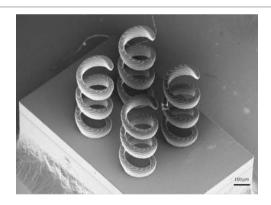
特性:

・サイズ:0.2×0.2×0.2mm³

・ロッド径:10μm・中空多孔質構造

02

マイクロスタック構造


応用領域: メカニカル・メタマテリアル

特性:

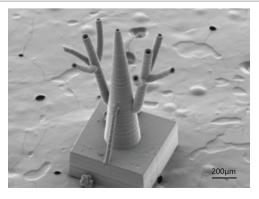
・サイズ:1.2×0.8×0.6mm³

·ロッド径:8μm ·柱のない吊り構造

03

マイクロスプリングラティス

応用領域: テラヘルツ装置、圧力センサー


特性:

·サイズ: $1.2 \times 0.8 \times 1$ mm³

·スプリングロッド径:20µm

・複雑な3次元構造

04

キャピラリーネットワーク構造

応用領域:組織工学、熱交換器

特性:

・サイズ: 0.6×0.6×1.2mm³

·内径:10-30µm

・高度な分岐構造

システム特性

項目/製品	microArch S240製品規格	
動作原理	プロジェクション・マイクロ・ステレオリソグラフィー (PμSL)	
光源	UV LED(405nm)	
造形材料	光硬化性樹脂	
光学解像度	10μm	
積層厚	10~40μm	
造形サイズ	モード 1: 単一照射モード モード 2: スティッチ(マルチ)照射モード モード 3: 配列コピーモード	19.2mm(L)×10.8mm(W)×75mm(H) 100mm(L)×100mm(W)×75mm(H) 100mm(L)×100mm(W)×75mm(H)
ファイル形式	STL ファイル	
最小設置面積	1700mm×700mm×1640mm	
設備外形寸法	650 mm(L) \times 670 mm(W) \times 790 mm(H)	
設備総重量	300kg	
電源	100~120V AC, 50/60Hz, 1KW	

設備の特徴と利点

- · 10µmの精密光学解像度により超微細構造を正確に造形可能;
- · 積層厚は10~40μmと滑らかな仕上がり;
- ・ より高速で中・小ロットにも対応;
- · cps5,000高粘度樹脂にも対応;
- · 3D編集に特化したMagicsスライスソフトウェアが標準装備;

01

マイクロ流体モデル

応用領域:マイクロ流体

特性:

·サイズ:10×6×2mm³

·積層厚は10μm、最小孔径は80μm

02

マイクロニードルアレイ

応用領域:生物医学

特性:

・サイズ:70×70×3.1mm³

·円錐の高さ:2mm、円錐台の直径:1mm

·先端の最小直径:20μm

・効率的に大規模な製造を実現

03

内視鏡ハウジング

応用領域: 医療器具

樹 脂: HTL

特性:

·個別サイズ13.8×9.8×9.8mm³、一体成型

·S240モデルは1バッチあたり50個の製造可能

04

アルミナマイクロギア

応用領域: MEMS

特性:

·ギアチップ幅:130µm

·歯車ピッチ:92µm

・セラミックスの質量割合:80wt.%

システム特性

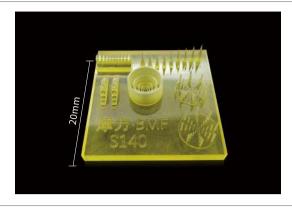
項目/製品	microArch S140製品規格
動作原理	プロジェクション・マイクロ・ステレオリソグラフィー (PμSL)
光源	UVLED(405nm)
造形材料	光硬化性樹脂
光学解像度	10μm
積層厚	10~40μm
造形サイズ	モード 1: 単一照射モード 19.2mm(L)×10.8mm(W)×45mm(H) モード 2: スティッチ(マルチ)照射モード 94mm(L)×52mm(W)×45mm(H) モード 3: 配列コピーモード 94mm(L)×52mm(W)×45mm(H)
ファイル形式	STL ファイル
最小設置面積	1700mm(L)×700mm(W)×1600mm(H)
設備外形寸法	600mm(L)× 600 mm(W)× 750 mm(H)
設備総重量	245kg
電源	100~120VAC, 50/60Hz, 1KW

設備の特徴と利点

- · 10µmの精密光学解像度により超微細構造を正確 に造形可能;
- ・ 積層厚は10~40μmと滑らかな仕上がり;
- ・マイクロスケール造形能力を有しながら、造形時 間は実用的な範囲;
- · 3D編集に特化したMagicsスライスソフトウェアが 標準装備;

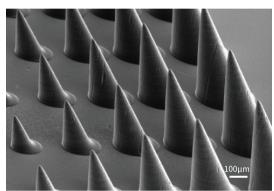
BMF 技術と既存技術の加工差異

BMF-140 滑らかな表面、シャープなエッジ 表面が粗く、エッジが曖昧



35μm解像度のプリンター

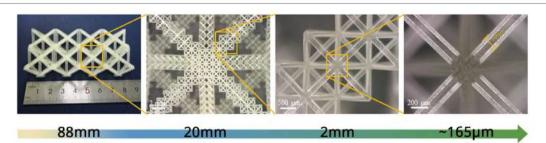
50µm解像度のプリンター 表面が粗く、エッジが曖昧


01

S140 機能モデル

- ·角柱/円柱:直径50-250μm、高さ0.2-2mm
- ·円すい:直径≤15µm,高さ0.6-4mm
- ·薄壁:壁の厚さ40-250μm、高さ0.3-3mm
- ·孔(垂直):直径50-250µm、深さ0.2-2mm
- ·孔(水平):直径50-300µm、長さ1mm

02


傾斜マイクロニードル

特性:

- ·円錐の傾斜角βは70°、高さ方向の勾配αは20°
- ·円錐台の直径は、円錐の先端サイズは20-40μm
- ・円錐の角度、高さ、周期を調整可能

Feng et al., Sci. Adv. 2020; 6 : eabb4540.

03

マルチスケールマイクロラティス

応用領域:多層構造機械材料

特 性:・サイズ:88×44×11mm³ · ビームの直径:160μm · 高精度·大判印刷

microArch®

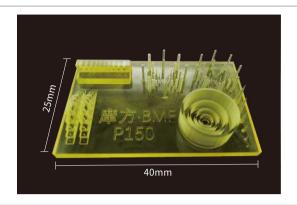
Micro Scale 3D Printing System

P150

(€

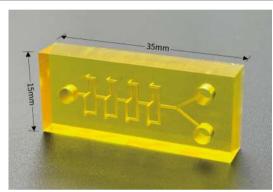
システム特性

項目/製品	microArch P150製品規格
動作原理	プロジェクション・マイクロ・ステレオリソグラフィー (PμSL)
光源	UVLED(405nm)
造形材料	光硬化性樹脂
光学解像度	25μm
積層厚	10~50μm
造形サイズ	48 mm(L) $\times 27$ mm(W) $\times 50$ mm(H)
ファイル形式	STL ファイル
設備外形寸法	530 mm(L) $\times 540$ mm(W) $\times 700$ mm(H)
設備総重量	85kg
電源	100~120VAC, 50/60Hz, 1KW


設備の特徴と利点

- · 25µmの精密光学解像度により微細構造を正確に造形可能;
- ・ 積層厚10~50μmと滑らかな仕上がり;
- ・ 高靭性、高温耐性、生体適合性など多彩な樹脂材料をご用意;
- · 3D編集に特化したMagicsスライスソフトウェアが標準装備;

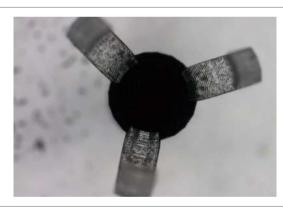
アプリケーション


01

P150 機能モデル

- ·角柱/円柱:直径125-500µm、高さ0.6-5mm
- ·円すい:直径≤35μm、高さ1-7mm
- ·薄壁:壁厚さ125-500μm、高さ0.75-5mm
- ·孔(垂直):直径125-500µm、深さ0.6-4mm
- ·孔(水平):直径125-500µm、長さ2mm

02


マイクロ流体デバイス

応用領域: 薬物スクリーニング、生物学的検出

特性:

- ・サイズ:35×15×6mm³
- ·チャンネル直径:400μm
- ・複雑な3次元マイクロチャネル

03

小型磁気ロボット

応用領域:マイクロロボット

特性:

- ·最小壁厚0.12mm
- ·サイズ:2.5mm以下
- ・他の磁性材料を添加

高精度印刷材料

様々なアプリケーションに対応

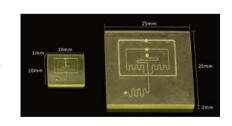
BMFは、お客様の多様なニーズにお応えするために、高靭性、高硬度、高温耐性、生体適合性など、さまざまな特性を備えた樹脂材料を開発してきました。お客様の要望に応じてカスタム仕様の対応も可能でございます。

高硬度樹脂(RG/HTL)

高強度および高耐衝撃性を備えており、ラピッド プロトタイピングと試作品製作に最適です。

高靭性樹脂(Tough)

ABS樹脂と同等の性能を持ち、留め具付きなど の組立関連の試作品に適しています。

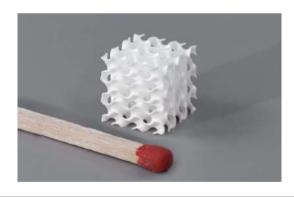

们 耐熱性樹脂(HTL/HT200)

熱変形温度114℃ (@0.45MPa) 医療機器の消毒などの高温環境での使用に適しています。

⋒▲ 生体適合性樹脂(BIO)

生体適合性認定 (Level-1) を受けています。食品や歯科、医療機器などの業界に適しています。ただし、Level-1認定の範囲に限ります。

材料パラメータ


標準樹脂		
樹脂	HTL(標準)	BIO(生体適合性)
粘度 @25℃	85 cP	300 cP
引張強度	71.5 MPa	56 MPa
弾性率	2397 MPa	1614 MPa
破断伸度	7.8%	6.2%
曲げ強度	113 MPa	106.6 MPa
曲げ弾性率	2.8 GPa	3.5 GPa
熱変形温度 @0.45MPa	114 °C	86 °C
吸水率 (24h)	1.05%	0.69%
誘電率(10GHz)	3.45	2.75
誘電体損失(10GHz)	0.0245	0.0458
硬さ	81 Shore D	84 Shore D
適用プリンタシリーズ	All	All
応用エリア	耐熱部品	医療実験;生物技術
色	黄色 (半透明)/ 黒色	黄色(半透明)

その他樹脂			
樹脂	RG(生体適合性、耐候性)	HT-200(耐高温)	Tough(強靭性)
粘度 @25°C	1100 cP	285 cP	180 cP
引張強度	60.4 MPa	87.8 MPa	82.9 MPa
弾性率	1765 MPa	3074 MPa	2566 MPa
破断伸度	11.7%	4.6%	14.0%
曲げ強度	77.7 MPa	153.6 MPa	122.4 MPa
曲げ弾性率	2.1 GPa	3.8 GPa	4.0 GPa
熱変形温度 @0.45MPa	56 °C	217 °C	78 °C
吸水率 (24h)	0.77%	2.70%	1.28%
誘電率(10GHz)	2.94	2.97	2.88
誘電体損失(10GHz)	0.0197	0.0475	0.033
硬さ	77 Shore D	78.6 Shore D	74.5 Shore D
適用プリンタシリーズ	240/140/150	240/140/150	240/140/150
応用エリア	医療実験;生物技術; 長期保存可能	耐熱部品	組立用部品; 長期保存可能
色	黄色 (半透明)	黄色 (半透明)	黄色(半透明)

セラミック	ALセラミック
純度 (%)	99.99
固体負荷(vol%)	51.4
動的粘度 [Pa•s]	8400
理論密度(g/cm³)	3.99
相対密度(%)	99.5
3 点曲げ強度(MPa)	500
ヤング率(GPa)	300
熱膨張係数(ppm/K)	7~8
熱伝導率(W/m⋅K)	32
電気抵抗率(Ω•cm)	≈1014
適用 3D プリンター	230/240

セラミック造形モデル

01

Gyroid

応用領域: エネルギー吸収、熱・物質移動

特性:

・サイズ:10.0×10.0×10.0mm

·壁厚さ:0.22mm

·造形材料:AL

·本体:microArch® S240

02

オネジ&メネジ

応用領域: MEMS

特性:

・オネジサイズ: 2.8×2.4×4.8mm メネジサイズ: 2.8×2.4×1.6mm

·造形材料:AL

·本体:microArch® S230

BMF社の技術を利用して発表された論文:

バイオニクス:

- [1] Tip-induced Flipping of Droplets on Janus pillars: From Local Reconfiguration to Global Transport. Science Advances. 2020, 6, eabb4540.
- [2] Programmable 3D Printed Wheat Awn-Like System for High-Performance Fogdrop Collection. Chemical Engineering Journal, 2020,125139.
- [3] 3D-Printed Bioinspired Cassie—Baxter Wettability for Controllable Microdroplet Manipulation. ACS Applied Materials&Interfaces. 2020. DOI: 10.1021/acsami.0c18952.
 - [4] Superrepellency of Underwater Hierarchical Structures on Salvinia Leaf. Proceedings of the National Academy of Sciences. 2020, 117(5), 2282-2287.

マイクロ・メカニック:

- [1] 3D Printed Piezoelectric BNNTs Nanocomposites with Tunable Interface and Microarchitectures for Self-powered Conformal Sensors. Nano Energy. 2020, 77, 105300.
- [2] 3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring. Research. 2020. DOI:10.34133/2020/1426078.
- [3] Three-Dimensional Stretchable Microelectronics by Projection Microstereolithography (PµSL). ACS Applied Materials&Interfaces. 2021. DOI: 10.1021/acsami.0c20162.
- [4] Design and Implementation of a Jellyfish Otolith-inspired MEMS Vector Hydrophone for Low-frequency Detection. Microsystems & Nanoengineering. 2021, 7, 1.

マイクロ流路:

- [1] Imaging and Characterizing Fluid Invasion in Micro-3D Printed Porous Devices with Variable Surface Wettability. Soft Matter 2019, 15(35), 6978-6987.
- [2] Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating. Soft Matter. 2020, 16, 6841-6849.
- [3] Microfluidic Droplet Formation in Co-Flow Devices Fabricated by Micro 3D Printing. Journal of Food Engineering 2021, 290(110), 212.
- [4] On-chip Rotational Manipulation of Microbeads and Oocytes using Acoustic Microstreaming Generated by Oscillating Asymmetrical Microstructures. Biomicrofluidics. 2019, 13, 064103.

メカニカル・メタマテリアル:

- [1] Liquid Metal-Polymer Microlattice Metamaterials with High Fracture Toughness and Damage Recoverability. Small. 2020, 2004190.
- [2] Optimizing Film Thickness to Delay Strut Fracture in High-Entropy Alloy Composite Microlattices. International Journal of Extreme Manufacturing. 2021, 3, 025101.
- [3] Synchrotron X-ray Micro-computed Tomography Imaging of 3D Re-entrant Micro lattice during in situ Micro Compression Experimental Process. Materials & Design 2020, 192(108), 743.

生物医学:

- [1] Integrated Assembly and Flexible Movement of Microparts Using Multifunctional Bubble Microrobots. ACS Applied Materials&Interfaces. 2020. DOI: 10.1021/acsami.0c17518.
- [2] Millimeter-Scale Soft Continuum Robots for Large-Angle and High-Precision Manipulation by Hybrid Actuation. Advanced Intelligent System. 2020, 2000189.

その他:

[1] Review-Projection Micro Stereolithography Based 3D Printing and Its Applications. International Journal of Extreme Manufacturing. 2020, 2(022), 004.

一部クライアント実績:

東京大学 早稲田大学 北京大学 清華大学 中国科学院

香港中文大学 カーネギーメロン大学 ノッティンガム大学 ドレスデン工科大学 ノースカロライナ州立大学

シンガポール南洋理工大学

アラブ首長国連邦カリフ大学

BMF Japan 株式会社

〒103-0022東京都中央区日本室町4-4-35階

TEL: 03-6265-1568

Email: info@bmf3d.co.jp
Website: www.bmf3d.co.jp

(www.bmf3d.co.jp)